What is the length of \overline{WX} ? Show or explain how 1. you got your answer.

(Note: The figure is not drawn to scale)

2. Use the triangle below to answer the following question(s).

In $\triangle ABC$ above, \overline{MN} is parallel to \overline{BC} . What is the length of \overline{MN} ?

Donna's beach bag is similar to her sister Sally's. The figures below show some of the measurements.

Which proportion could be used to find the width of Sally's beach bag?

A.
$$\frac{18}{36} = \frac{w}{25}$$
 B. $\frac{18}{25} = \frac{w}{36}$

B.
$$\frac{18}{25} = \frac{w}{36}$$

C.
$$\frac{25}{36} = \frac{18}{w}$$
 D. $\frac{36}{w} = \frac{18}{25}$

D.
$$\frac{36}{w} = \frac{18}{25}$$

The triangles shown below are similar.

The scale factor from the large triangle to the small triangle is 3:1. What is the length of side xof the smaller triangle?

A ladder is placed against a fence that is 6 feet tall. The ladder extends 2 feet above the fence and 3 feet behind the fence.

Note: The figure is not drawn to scale.

Which proportion can be used to find the distance (x) between the bottom of the ladder and the bottom of the fence?

A.
$$\frac{x}{6} = \frac{3}{8}$$
 B. $\frac{x}{6} = \frac{2}{3}$

B.
$$\frac{x}{6} = \frac{2}{3}$$

C.
$$\frac{x}{6} = \frac{3}{2}$$

D.
$$\frac{x}{6} = \frac{8}{3}$$

In the diagram below, $\triangle ABC$ and $\triangle DEF$ are similar triangles with the dimensions shown, in units.

What is the length, in units, of \overline{EF} ?

At 4:00 pm on a sunny day, a stick 2 feet tall casts a shadow 5 feet long. At the same time, a tree nearby casts a shadow 55 feet long.

What is the height, in feet, of the tree?

Natalie drew this figure on a piece of paper.

If $TAP \sim TED$, what is the value of x?

(Note: This figure is not drawn to scale.)